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Abstract We prove the equivalence between the existence of a non-trivial hitting time sta-
tistics law and Extreme Value Laws in the case of dynamical systems with measures which
are not absolutely continuous with respect to Lebesgue. This is a counterpart to the result of
the authors in the absolutely continuous case. Moreover, we prove an equivalent result for
returns to dynamically defined cylinders. This allows us to show that we have Extreme Value
Laws for various dynamical systems with equilibrium states with good mixing properties.
In order to achieve these goals we tailor our observables to the form of the measure at hand.
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1 Introduction

Understanding extreme events is important in many fields, for example in the data analysis of
climate and financial markets. These examples can be studied using probabilistic models as
well as dynamical systems models. In this paper we prove the equivalence of some notions of
extremal events in probability theory and dynamical systems, namely Extreme Value Laws
and Hitting time statistics. Our focus is on systems which are deterministic, but satisfy many
of the statistical limit theorems for random processes asymptotically. This follows on from
[13] in which we developed this theory in a ‘smoother’ situation. Here we prove similar
results for systems with ‘non-smooth’ measures and for a correspondingly wider range of
observations. This gives us access to a huge range of statistical limit theorems for dynamical
systems which we give some examples of at the end of the paper. A lengthy introduction is
necessary to fix the various notions we use here. Our main results are contained in Sect. 6.

1.1 Extreme Value Laws

Consider a sequence of random variables (r.v.) X0,X1, . . . and define a new stochastic
process M1,M2, . . . given by

Mn = max{X0, . . . ,Xn−1}. (1.1)

If Mn has a non-degenerate weak limit law under linear normalisation, i.e., if there ex-
ist sequences (an)n∈N, (bn)n∈N, such that an(Mn − bn) converges in distribution to a non-
degenerate distribution function (d.f.) H , then we say we have an Extreme Value Law (EVL)
for Mn.

When X0,X1, . . . is an independent and identically distributed (i.i.d) sequence, the clas-
sical Extreme Value Theory asserts that H can only be of one of the three classical EVL
known as:

Type 1: EV1(y) = e−e−y
for y ∈ R; this is also known as the Gumbel extreme value distrib-

ution (evd).
Type 2: EV2(y) = e−y−α

, for y > 0, EV2(y) = 0, otherwise, where α > 0 is a parameter;
this family of d.f.s is known as the Fréchet evd.

Type 3: EV3(y) = e−(−y)α , for y ≤ 0, EV3(y) = 1, otherwise, where α > 0 is a parameter;
this family of d.f.s is known as the Weibull evd.

In this paper the sequence of random variables X0,X1, . . . is generated deterministically by
a discrete time dynamical system. To be more precise, consider the system (X , B,μ,f ),
where X is a d-dimensional Riemannian manifold, B is the Borel σ -algebra, f : X →
X is a measurable map and μ is an f -invariant probability measure (which means that
μ(f −1(B)) = μ(B), for all B ∈ B). We consider a Riemannian metric on X that we denote
by ‘dist’ and for any ζ ∈ X and δ > 0, we define Bδ(ζ ) = {x ∈ X : dist(x, ζ ) < δ}. Take
a r.v. ϕ : X → R ∪ {±∞} achieving a global maximum at ζ ∈ X (we allow ϕ(ζ ) = +∞),
consider the stationary stochastic process X0,X1, . . . given by

Xn = ϕ ◦ f n, for each n ∈ N ∪ {0}. (1.2)

Clearly, X0,X1, . . . defined in this way is not an independent sequence. However, f -
invariance of μ guarantees that this stochastic process is stationary. Also, note that X0 is
just the r.v. ϕ.
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1.2 Hitting/Return Time Statistics

Consider now a set A ∈ B and a new r.v. that we refer to as first hitting time to A and denote
by rA : X → N ∪ {+∞} where

rA(x) = min{j ∈ N ∪ {+∞} : f j (x) ∈ A}. (1.3)

Given a sequence of sets {Un}n∈N so that μ(Un) → 0 we define the stochastic process
rU1 , rU2 , . . . If under suitable normalisation rUn converges in distribution to some non-
degenerate d.f. G we say that the system has Hitting Time Statistics (HTS) for {Un}n∈N.
For systems with ‘good mixing properties’, G is the standard exponential d.f., in which
case, we say that we have exponential HTS.

We say that the system has HTS G to balls at ζ if for any sequence (δn)n∈N ⊂ R
+ such

that δn → 0 as n → ∞ we have HTS G for (Un)n = (Bδn(ζ ))n.
Let P0 denote a partition of X . We define the corresponding pullback partition Pn =∨n−1

i=0 f −i (P0), where ∨ denotes the join of partitions. We refer to the elements of the parti-
tion Pn as cylinders of order n. For every ζ ∈ X , we denote by Zn[ζ ] the cylinder of order
n that contains ζ . For some ζ ∈ X this cylinder may not be unique, but we can make an ar-
bitrary choice, so that Zn[ζ ] is well defined. We say that the system has HTS G to cylinders
at ζ if we have HTS G for Un = Zn(ζ ).

Let μA denote the conditional measure on A ∈ B, i.e., μA := μ|A
μ(A)

. Instead of starting
somewhere in the whole space X , we may want to start in Un and study the fluctuations of
the normalised return time to Un as n goes to infinity, i.e., for each n, we look at the random
variables rUn as being defined in the probability space (Un, B ∩ Un,μUn) and wonder if,
under some normalisation, they converge in distribution to some non-degenerate d.f. G̃,
in which case, we say that the system has Return Time Statistics (RTS) for {Un}n∈N. The
existence of exponential HTS is equivalent to the existence of exponential RTS. In fact,
according to [16], a system has HTS G if and only if it has RTS G̃ with G(t) = ∫ t

0 (1 −
G̃(s)) ds.

In [13], the authors established a relation between the existence of HTS for balls and
EVL for the stochastic processes defined in (1.1) arising from the stationary sequence of
random variables given by (1.2). This link was proved in the case where the invariant prob-
ability measure μ is absolutely continuous with respect to Lebesgue measure (an acip) and
allowed us to study HTS with tools of EVL and vice-versa in that setting. This connection
was applied with success to non-uniformly hyperbolic systems both in the unidimensional
and multidimensional cases. The main goal of this paper is to broaden the applications sce-
nario by establishing the connection between HTS and EVL without the restraint of the
invariant probability measure being absolutely continuous with respect to Lebesgue or, in
other words, μ is not an acip. This lets us study the cases where the invariant measure is
an equilibrium state, for example, but not an acip. We accomplish this generalisation by tai-
loring the observable to the measure μ. This yields a non-smooth observable ϕ. A precise
statement of our results are contained in Sect. 6.

Early results regarding laws of rare events for dynamical systems [18, 24], showed the
occurrence of exponential RTS and HTS for returns/hits to dynamical cylinders rather than
to balls. Indeed, the theory of rare events still has its widest application for this kind of
returns/hits. Therefore, another purpose of this paper is to interpret HTS for cylinders in the
context of EVL. Again, this will be achieved by adapting the observable ϕ to provide the
desired connection, which in this case will imply adjusting the notion of EVL to apply when
the convergence of an(Mn − bn) occurs only for particular subsequences. Again, to see a
precise statement of this theorem see Sect. 6.
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2 Normalising Sequences for EVL and HTS/RTS

If ζ belongs to the support of μ and the probability measure μ is ergodic then Mn → ϕ(ζ )

almost surely. Hence, to understand this convergence more fully, one has to find normalising
sequences (an)n∈N ⊂ R

+ and (bn)n∈N ⊂ R such that

μ({x : an(Mn − bn) ≤ y}) = μ({x : Mn ≤ un}) → H(y), (2.1)

for some non-degenerate d.f. H , as n → ∞. Here the level un is linear on y

un := un(y) = y

an

+ bn (2.2)

and must be such that un → ϕ(ζ ), as n → ∞ in order to get a limiting law. We refer to an
event {Xj > un} as an exceedance, at time j , of level un and it is clear that μ(Xj > un) → 0
as n → ∞.

Under some mixing conditions it is possible to reduce the study of EVL for stationary
stochastic processes to that of i.i.d sequences. Hence, we motivate the choice of the normal-
ising sequence of levels (un)n∈N by following the procedure in the i.i.d case. First, to the
stationary sequence X0,X1, . . . we associate an i.i.d sequence of r.v.s Y0, Y1, . . . such that
each Yj has the same d.f. of any Xi , for all j, i ∈ N, and define

M̂n := max{Y0, . . . , Yn−1}. (2.3)

In order to compute the rate at which un → ϕ(ζ ) so that M̂n is normalised, observe that by
independence μ(M̂n ≤ un) = (μ(Y0 ≤ un))

n = (μ(X0 ≤ un)
n which gives

log(μ(M̂n ≤ un)) = log(μ(X0 ≤ un)
n) = n log(μ(X0 ≤ un))

= n log(1 − μ(X0 > un)) ∼ −nμ(X0 > un).

Throughout this paper the notation An ∼ Bn means that limn→∞ An

Bn
= 1. Hence, if there

exists some 0 ≤ τ ≤ ∞ such that

nμ(X0 > un) → τ, as n → ∞, (2.4)

then

μ(M̂n ≤ un) → e−τ , as n → ∞, (2.5)

and the reciprocal is also true. Observe that τ depends on y through un and, in fact, depend-
ing on the type of limit law that applies, we have that τ = τ(y) is of one of the following
three types:

τ1(y) = e−y for y ∈ R, τ2(y) = y−α for y > 0, and τ3(y) = (−y)α for y ≤ 0, (2.6)

where we assume that τ2(y) = +∞ for y ≤ 0 and τ3(y) = 0 for y > 0.
This takes care of the normalising sequences and so, more explicitly, we say:

Definition 2.1 we have an EVL H for Mn if there exist a function H̃ : [0,+∞) → [0,1]
and normalising sequences an, bn such that un defined in (2.2) satisfies (2.4), and (2.1) holds
with H(y) = H̃ (τ (y)), where τ(y) is as in (2.6).
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Observe that in the i.i.d case whenever we have an EVL we have H̃ (t) = e−t , for all
t ≥ 0.

Regarding normalising sequences to obtain HTS/RTS, we recall Kac’s Lemma, which
states that the expected value of rA with respect to μA is

∫
A

rA dμA = 1/μ(A). So in study-
ing the fluctuations of rA on A, the relevant normalising factor should be 1/μ(A).

Definition 2.2 Given a sequence of sets (Un)n∈N so that μ(Un) → 0, the system has HTS G

for (Un)n∈N if for all t ≥ 0

μ

(

rUn <
t

μ(Un)

)

→ G(t) as n → ∞, (2.7)

and the system has RTS G̃ for (Un)n∈N if for all t ≥ 0

μUn

(

rUn <
t

μ(Un)

)

→ G̃(t) as n → ∞. (2.8)

3 Existence of Laws of Rare Events

In order to show directly the existence of EVL for dynamical systems, we refer to [12] where
the general strategy is to prove that X0,X1, . . . satisfies some mixing conditions which allow
the reduction to the i.i.d case. Following [22] we refer to these conditions as D(un) and
D′(un), where un is the sequence of thresholds appearing in (2.1). Both conditions impose
some sort of independence but while D(un) acts on the long range, D′(un) is a short range
requirement.

Condition (D(un)) We say that D(un) holds for the sequence X0,X1, . . . if for any integers
�, t and n

|μ({X0 > un} ∩ {max{Xt, . . . ,Xt+�−1} ≤ un}) − μ({X0 > un})μ({M� ≤ un})| ≤ γ (n, t),

where γ (n, t) is nonincreasing in t for each n and nγ (n, tn) → 0 as n → ∞ for some
sequence tn = o(n).

This condition follows immediately from sufficiently fast decay of correlations for ob-
servables which are of bounded variation or Hölder continuous (see [12, Sect. 2] and [13,
Lemma 6.1]).

By (2.4), the sequence un is such that the average number of exceedances in the time
interval {0, . . . , �n/k�} is approximately τ/k, which goes to zero as k → ∞. However, the
exceedances may have a tendency to be concentrated in the time period following the first
exceedance at time 0. To avoid this we introduce:

Condition (D′(un)) We say that D′(un) holds for the sequence X0,X1, . . . if

lim
k→∞

lim sup
n→∞

n

�n/k�∑

j=1

μ({X0 > un} ∩ {Xj > un}) = 0. (3.1)
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This guarantees that the exceedances should appear scattered through the time period
{0, . . . , n − 1}.

The main result in [12, Theorem 1] states that if D(un) and D′(un) hold for the process
X0,X1, . . . and for a sequence of levels satisfying (2.4), then the following limits exist, and

lim
n→∞μ(M̂n ≤ un) = lim

n→∞μ(Mn ≤ un). (3.2)

The existence of EVLs for dynamical systems is a recent topic and have been proved for
non-uniformly hyperbolic systems in the pioneer paper [8]. Since then other results followed
in [11–13, 15, 20].

On the other hand, the theory of HTS/RTS laws is now a well developed theory, ap-
plied first to cylinders and hyperbolic dynamics, and then extended to balls and also to
non-uniformly hyperbolic systems. We refer to [6] and [25] for very nice reviews as well as
plenty of references on the subject. (See also [1], where the focus is more towards a finer
analysis of uniformly hyperbolic systems.) Several different approaches have been used to
prove HTS/RTS: from the analysis of adapted Perron-Frobenius operators in [18], the use
of inducing schemes in [3–5], to the relation between recurrence rates and dimension as
explained in [25, Sect. 4]. We would like to give particular mention to [19] in which general
mixing conditions were introduced, under which exponential HTS/RTS hold. These condi-
tions are related to quantities denoted by aN(U) and bN(U) in [19, Lemma 2.4]. It turns out
that D′(un) is closely related to aN(U) in the sense that both require some sort of short range
independence while D(un) is linked to bN(U) and imposes some mixing type of behaviour.

4 The Choice of Observables

We assume that the observable ϕ : X → R ∪ {+∞} is of the form

ϕ(x) = g(μ(Bdist(x,ζ )(ζ ))), (4.1)

where ζ is a chosen point in the phase space X and the function g : [0,+∞) → R ∪ {+∞}
is such that 0 is a global maximum (g(0) may be +∞); g is a strictly decreasing bijection g :
V → W in a neighbourhood V of 0; and has one of the following three types of behaviour:

Type 1: there exists some strictly positive function p : W → R such that for all y ∈ R

lim
s→g1(0)

g−1
1 (s + yp(s))

g−1
1 (s)

= e−y; (4.2)

Type 2: g2(0) = +∞ and there exists β > 0 such that for all y > 0

lim
s→+∞

g−1
2 (sy)

g−1
2 (s)

= y−β; (4.3)

Type 3: g3(0) = D < +∞ and there exists γ > 0 such that for all y > 0

lim
s→0

g−1
3 (D − sy)

g−1
3 (D − s)

= yγ . (4.4)
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It may be shown that no non-degenerate limit applies if
∫ g1(0)

0 g−1
1 (s)ds is not finite.

Hence, an appropriate choice of p in the Type 1 case is given by p(s) = ∫ g1(0)

s
g−1

1 (t)dt/

g−1
1 (s) for s < g1(0).

Examples of each one of the three types are as follows: g1(x) = − logx (in this case (4.2)
is easily verified with p ≡ 1), g2(x) = x−1/α for some α > 0 (condition (4.3) is verified with
β = α) and g3(x) = D − x1/α for some D ∈ R and α > 0 (condition (4.4) is verified with
γ = α).

In [13] we assumed that ϕ(x) = g(dist(x, ζ )). Since the invariant measure there
was an acip, using Lebesgue’s differentiation theorem, we could write μ(Bη(ζ )) ∼
ρ(ζ )Leb(Bη(ζ )), where we assume that ρ(ζ ) = dμ

Leb (ζ ) > 0 and Lebesgue’s differentia-
tion theorem applies to ζ . In here, since μ may not be an acip the function � defined for
small η ≥ 0 and given by

�(η) = μ(Bη(ζ )) (4.5)

may not be absolutely continuous. However, we require that � is continuous in η. For ex-
ample, if X is an interval and μ a Borel probability with no atoms, i.e., points with positive
μ measure, then � is continuous. One of our applications is to equilibrium states, which
we explain in Sect. 8.1. A major difference here is that although g is invertible in a small
neighbourhood of 0, the function � does not have to be. This means that, in contrast with
[13], the observable ϕ, as a function of the distance to ζ , may not be invertible in any small
neighbourhood of ζ .

For that reason, we now set

�(γ ) := inf{η > 0 : μ(Bη(ζ )) = γ }, (4.6)

which is well defined for all small enough γ ≥ 0, by the continuity of �. Moreover, again by
continuity of �, we have

μ(B�(γ )(ζ )) = γ. (4.7)

Remark 4.1 Let the d.f. F be given by F(u) = μ(X0 ≤ u) and set uF = sup{y : F(y) < 1}.
Observe that if at time j ∈ N we have an exceedance of level u (sufficiently large), i.e.,
Xj(x) > u, then we have an entrance of the orbit of x into the ball B�(g−1(u))(ζ ) of radius
�(g−1(u)) around ζ , at time j . This means that the behaviour of the tail of F , i.e., the
behaviour of 1 − F(u) as u → uF is basically determined by g−1. From classical Extreme
Value Theory we know that the behaviour of the tail determines the limit law for partial
maxima of i.i.d sequences and vice-versa. The above conditions are just the translation in
terms of the shape of g−1, of the sufficient and necessary conditions on the tail of F of [22,
Theorem 1.6.2], which guarantee the existence of a non-degenerate limit distribution for
M̂n. In fact, if some EV i applies to M̂n, for some i = 1,2,3, then g must be of type gi .

The fact that the conditions on the shape of g−1 imposed by (4.2), (4.3) and (4.4) cor-
respond to the sufficient and necessary conditions of [22, Theorem 1.6.2] on the tail of a
distribution which guarantee a non-degenerate EVL in the i.i.d setting, means that the only
interesting cases for us are the ones where g is of one of the three types above.
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5 Limit Laws for Cylinders

In order to make the connection between HTS/RTS and EVL for cylinders we make a suit-
able choice of the observable ϕ, which, in this case, we set it to be of the form

ϕ = g ◦ ψ, (5.1)

where g is one of the three forms given above and ψ(x) := μ(Zn[ζ ]) where n is maximal
such that x ∈ Zn[ζ ].

The highly irregular behaviour of ψ leads us to an adjustment of the definition of EVL,
which we will refer to as a cylinder EVL. The problem arises with the possible nonexistence
of a sequence of levels un such that (2.4) holds.

To illustrate the problem and to motivate our definition of EVL for cylinders we consider
the so-called full tent map f : [0,1] → [0,1] given by

f (x) = 1 − |2x − 1|,
with the partition P0 = {[0, 1

2 ], ( 1
2 ,1]}. This is the situation considered in [15] and, in many

aspects, is as good as it gets. For definiteness take ζ = 1, g2(x) = 1/x and stipulate that
g2(0) = +∞. In this case, it is easy to check that Lebesgue measure is invariant hence
we assume that μ stands for Lebesgue measure on [0,1]. Besides, for every j ∈ N, we
have Zj(ζ ) = (1 − 2−j ,1] and μ(Zj (ζ )) = 2−j . Let F denote the d.f. of X0, i.e., F(y) =
μ(X0 ≤ y). Observe that F is discontinuous. In fact, at every yj = 2j , with j ∈ N, the d.f.
F has a jump of size 2−j . These jumps at yj are too big when compared to 1 − F(yj ) and
make it impossible to find a sequence un such that (2.4) holds for some τ > 0. The natural
candidate here would be to take un = 2[log2 n]. However, nμ(X0 > un) = n(1 − F(un)) =

n

2[log2 n] oscillates too much to have a limit. This phenomenon also occurs for general choices
of ζ and for general dynamical systems.

Also, the Shannon-McMillan-Breimann Theorem says that if the metric entropy hμ is
positive, then for μ-a.e. ζ , the cylinders Zn[ζ ] ∈ Pn satisfy

lim
n→∞

− logμ(Zn[ζ ])
n

→ hμ.

This means that even for ‘well behaved’ systems such as the full tent map, nμ(X0 > un) can
fluctuate wildly since μ(Zn[ζ ]) ∼ e−hμn, which creates jumps in the tail of the d.f. F which
are too big when compared to the value of the tail of F at the jumps. Indeed in the special
case of the full tent map, we also have

μ(Zn[ζ ])
e−nhμ

= 1. (5.2)

(More generally, for more complicated measures and systems, this quantity also fluctuates
wildly in n, see Remark 8.1 for a note on the situation for Gibbs measures.)

A possible solution for this issue is to take a subsequence of the time n, which we denote
by (ωn)n∈N and such that

ωnμ(X0 > un) −−−→
n→∞ τ > 0. (5.3)

So, for the full tent map, for any τ > 0, one could take for example:

ωn = [τ2n] and un = 2n, (5.4)

and we would get that ωnμ(X0 > un) = [τ2n]2−n converges to τ > 0.
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Remark 5.1 The choice of (ωn)n for the full tent map is of a particularly nice form: [τeαn].
This follows since all n-cylinders have equal measure, as in (5.2). This is far from the general
situation, in which we would expect μ(Zn[ζ ])

e−nhμ
to fluctuate wildly. For this reason, there is no

general way of choosing ωn to be of the form [τeαn] for some fixed α which can depend
on ζ .

Moreover, as for the case of balls:

Lemma 5.1 If ωnμ(X0 > un) −−−→
n→∞ τ ≥ 0, then limn→∞ μ(M̂ωn ≤ un) → e−τ .

Proof Recall that μ(M̂ωn ≤ un) = (1 − μ(X > un))
ωn . Since

log(1 − μ(X > un))
ωn ∼ −ωnμ(X > un),

the lemma follows. �

In the case of EVLs for observations compatible with balls, as in the standard EVT
setting, we took samples of Mn at times n = 1,2, . . . and so on. This fitted in with the natural
scaling given by the measures of the balls, which were of order 1/n. When our observables
are compatible with cylinders, the time scale ω1,ω2, . . . should be the reciprocal of the
measure of the cylinders, which on average decay exponentially fast.

However, a new complication emerges with this strategy that we already bypassed in the
full tent map case with our choice of ωn and un in (5.4). By definition EVLs are limit laws
for the maxima under linear normalisation which means that un is of the form (2.2) which
depends on a factor y. In the full tent map case, if we were to choose instead ωn = 2n and
un = 2ny (which is the typical choice for an observable g2), using Lemma 5.1, we would be
led to the limit law H(y) = e−2−[log2 y]

which is not continuous and not one of the classical
EV i , i = 1,2,3. In fact, since ωn is not linear in n, we cannot obtain a max stable law (see
Remark 5.2 for definition) with this last type of normalisation.

Hence, while previously we built the dependence of μ(X > un) on τ into (un)n∈N, in this
setting it is necessary, if our results are to hold for general dynamical systems, to build the
dependence on τ into the time scale. For every n ∈ N, τ ≥ 0, let un be such that

{X0 > un} = Zn[ζ ] (5.5)

and set

ωn = ωn(τ) = [τ(μ(X0 > un))
−1]. (5.6)

Finally, we say that we have a cylinder EVL H for the maximum if for any sequence
(un)n∈N such that (5.5) holds and for ωn defined in (5.6), the limit (5.3) holds and

μ(Mωn ≤ un) → 1 − H(τ),

for some non-degenerate d.f. H , as n → ∞.
It is clear that the existence of an EVL for balls is a rather stronger statement then the

existence of a cylinder EVL for a particular system since the later only requires convergence
on certain suitable subsequences. We mention that Haiman obtained an exponential cylinder
EVL for the full tent map. In his paper ζ = 1/2, g2(x) = 1 − |2x − 1| and [15, Theorem 2]
states that

lim
n→∞μ(M[τ2n] ≤ 1 − 2−n) = e−τ .
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However, it is possible to show that the full tent map admits an actual EVL for balls centred
on the vertex [10].

In order to prove the existence of an exponential cylinder EVL it is enough to check
conditions D and D′ on the subsequence ωn: let un and ωn be defined as in (5.5) and (5.6),
respectively, and consider the conditions:

Condition (D(un,ωn)) We say that D(un,ωn) holds for the sequence X0,X1, . . . if for any
integers �, t and n

|μ({X0 > un} ∩ {max{Xt, . . . ,Xt+�−1} ≤ un}) − μ({X0 > un})μ({M� ≤ un})| ≤ γ (n, t),

where γ (n, t) is nonincreasing in t for each n and ωnγ (n, tn) → 0 as n → ∞ for some
sequence tn = o(ωn);

Condition (D′(un,ωn)) We say that D′(un,ωn) holds for the sequence X0,X1, . . . if

lim
k→∞

lim sup
n→∞

ωn

�ωn/k�∑

j=1

μ({X0 > un} ∩ {Xj > un}) = 0. (5.7)

If D(un,ωn) and D′(un,ωn) hold then

μ(Mωn ≤ un) → e−τ , as n → ∞. (5.8)

The proof of this statement follows from Lemma 5.1 and a straightforward adaption of the
argument in the proof of [12, Theorem 1]

Remark 5.2 We say that a nondegenerate d.f. H is max-stable if, for each n = 2,3, . . . , there
are constants an > 0 and bn such that (H(anx +bn))

n = H(x). A nondegenerate function H

is max-stable if and only if there is a sequence (Fn)n∈N of d.f.s and constants an > 0 and bn

such that Fn(a
−1
nk x + bnk) → (H(x))1/k as n → ∞, for each k = 1,2, . . . . As a consequence

of this result we can see that the class of nondegenerate d.f. which appear as limit laws in
(2.1) coincides with the class of max-stable d.f.s.

Remark 5.3 We can also apply the above theory to so-called ‘dynamical balls’, also known
as ‘Bowen balls’. For a dynamical system f : X → X , a point ζ ∈ X and ε > 0, the set
Bn(ζ, ε) := {y ∈ X : d(f j (x), f j (y)) < ε for every 1 ≤ j ≤ n} is an (n, ε)-dynamical ball
around ζ . So we may choose our sets (Un)n∈N in Definition 2.2 to be the sets (Bn(ζ, ε))n∈N.
Recurrence for this type of ball was studied, for example, in [27].

6 Main Results

For the statements below, we recall that the stochastic process X0,X1, . . . is defined by (1.2)
where the observable ϕ is either defined by (4.1) or (5.1). In both cases, we stress that g

stands for some gi with i = 1,2,3 defined by conditions (4.2), (4.3) and (4.4), respectively.
Our first main result, which obtains EVLs from HTS for balls, is the following.

Theorem 1 Let (X , B,μ,f ) be a dynamical system, ζ ∈ X be in the support of μ and
assume that μ is such that the function � defined on (4.5) is continuous.
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• If we have HTS G to balls centred on ζ ∈ X , then we have an EVL H for Mn that applies
to the observables (4.1) achieving a maximum at ζ , which is such that H̃ = 1 −G and we
may write H(y) = 1 − G(τ(y)) where τ is of one of the forms τi given in (2.6).

• If we have exponential HTS (G(t) = 1 − e−t ) to balls at ζ ∈ X , then we have an EVL for
Mn which coincides with that of M̂n (meaning that (3.2) holds). In particular, this EVL
must be one of the 3 classical types. Moreover, if g is of type gi , with i = 1,2,3, then we
have an EVL for Mn of type EV i .

Now, we state a result in the other direction, i.e., we show how to get HTS from EVLs
for balls.

Theorem 2 Let (X , B,μ,f ) be a dynamical system, ζ ∈ X be in the support of μ and
assume that μ is such that the function � defined in (4.5) is continuous.

• If we have an EVL H for Mn which applies to the observables (4.1) achieving a maximum
at ζ ∈ X then we have HTS G to balls at ζ , where G = 1 − H̃ .

• If we have an EVL for Mn which coincides with that of M̂n, then we have exponential HTS
(G(t) = 1 − e−t ) to balls at ζ .

Finally, we state a result relating cylinder EVLs and HTS for cylinders.

Theorem 3 Let (X , B,μ,f ) be a dynamical system, ζ ∈ X be in the support of μ. We have
a cylinder EVL H for the maximum, where the observable is given by (5.1), if and only if we
have HTS H to cylinders which is to say that

lim
n→∞μ(Mωn ≤ un) = 1 − H(t) = lim

n→∞μ

(

rZn[ζ ] ≥ t

μ(Zn[ζ ])
)

,

for the sequences (un)n∈N, (ωn)n∈N such that (5.5) and (5.6) hold.
Moreover, if H(t) = e−t then we may replace Mωn by M̂ωn and/or μ by μZn[ζ ] in the

equation above.

7 Proofs

In this section we prove Theorems 1, 2 and 3.

Proof of Theorem 1 Set

un = g1(n
−1) + p(g1(n

−1))y, for y ∈ R, for type g1;

un = g2(n
−1)y, for y > 0, for type g2;

un = D − (D − g3(n
−1))(−y), for y < 0, for type g3.

For n sufficiently large,

{x : Mn(x) ≤ un} =
n−1⋂

j=0

{x : Xj(x) ≤ un} =
n−1⋂

j=0

{x : g(μ(Bdist(f j (x),ζ )(ζ ))) ≤ un}

=
n−1⋂

j=0

{x : μ(Bdist(f j (x),ζ )(ζ )) ≥ g−1(un)}. (7.1)
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Consequently, by (4.7),

μ({x : Mn(x) ≤ un}) = μ

(
n−1⋂

j=0

{x : μ{Bdist(f j (x),ζ )(ζ )} ≥ μ{B�(g−1(un))(ζ )}}
)

= μ

(
n−1⋂

j=0

{x : dist(f j (x), ζ ) ≥ �(g−1(un))}
)

= μ({x : rB
�(g−1(un))

(ζ )(x) ≥ n}). (7.2)

Now, observe that (4.2), (4.3) and (4.4) imply

g−1
1 (un) = g−1

1 [g1(n
−1) + p(g1(n

−1))y] ∼ g−1
1 [g1(n

−1)]e−y = e−y

n
;

g−1
2 (un) = g−1

2 [g2(n
−1)y] ∼ g−1

2 [g2(n
−1)]y−β = y−β

n
;

g−1
3 (un) = g−1

3 [D − (D − g3(n
−1))(−y)] ∼ g−1

3 [D − (D − g3(n
−1)](−y)γ = (−y)γ

n
.

Thus, we may write

g−1(un) ∼ τ(y)

n
,

meaning that

g−1
i (un) ∼ τi(y)

n
, ∀i ∈ {1,2,3}

where τ1(y) = e−y for y ∈ R, τ2(y) = y−β for y > 0, and τ3(y) = (−y)γ for y < 0.
Recalling (4.7), we have

μ(B�(g−1(un))(ζ )) ∼ τ(y)

n
,

and so,

n ∼ τ(y)

μ(B�(g−1(un))(ζ ))
. (7.3)

Now, we claim that using (7.2) and (7.3), we have

lim
n→∞μ(Mn(x) ≤ un) = lim

n→∞μ

(

rB
l(g−1(un))

(ζ )(x) ≥ τ(y)

μ(B�(g−1(un))(ζ ))

)

(7.4)

= 1 − G(τ(y)), (7.5)

which gives the first part of the theorem.
To see that (7.4) holds, observe that by (7.2) and (7.3) we have

∣
∣
∣
∣μ(Mn ≤ un) − μ

(

rB
�(g−1(un))

(ζ ) ≥ τ(y)

μ(B�(g−1(un))(ζ ))

)∣
∣
∣
∣

= ∣
∣μ

(
rB

�(g−1(un))
(ζ ) ≥ n

) − μ
(
rB

�(g−1(un))
(ζ ) ≥ (1 + εn)n

)∣
∣,
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where (εn)n∈N is such that εn → 0 as n → ∞. Since we have

{rB
�(g−1(un))

(ζ ) ≥ m} \ {rB
�(g−1(un))

(ζ ) ≥ m + k} ⊂
m+k−1⋃

j=m

f −j
(
B�(g−1(un))(ζ )

)
,

∀m,k ∈ N, (7.6)

it follows by stationarity that
∣
∣μ(rB

�(g−1(un))
(ζ ) ≥ n) − μ

(
rB

�(g−1(un))
(ζ ) ≥ (1 + εn)n

)∣
∣

≤ |εn|nμ
(
B�(g−1(un))(ζ )

) ∼ |εn|τ → 0,

as n → ∞, completing the proof of (7.4).
Next we will use the exponential HTS hypothesis, that is G(t) = 1 − e−t , to show the

second part of the theorem.
Under the exponential HTS assumption, by (7.5) it follows immediately that μ(Mn(x) ≤

un) → e−τ(y), as n → ∞. Recall that in the corresponding i.i.d setting, i.e. when we
are considering {x : M̂n(x) ≤ un} rather than {x : Mn(x) ≤ un}, (2.4) is equivalent
to (2.5). Therefore we also have limn→∞ μ(M̂n(x) ≤ un) = e−τ(y), since nμ(X0 > un) =
nμ(B�(g−1(un))(ζ )) → τ(y), as n → ∞. As explained in the introduction, this means that in
the i.i.d setting e−τ(y) must be of the three classical types. It remains to show that if the ob-
servable is of type gi then limn→∞ μ(Mn(x) ≤ un) = e−τi (y) means that the EVL that applies
to Mn (rather than M̂n) is also of type EV i , for each i ∈ {1,2,3}.
Type g1: In this case we have e−τ1(y) = e−e−y

, for all y ∈ R, that corresponds to the Gumbel
evd and so we have an EVL for Mn of type EV1.

Type g2: We obtain e−τ2(y) = e−y−β
for y > 0. To conclude that in this case we have the

Fréchet evd with parameter β , we only have to check that for y ≤ 0, μ(Mn(x) ≤ un) = 0.
Since g2(n

−1) > 0 (for all large n) and

μ(Mn(x) ≤ un) = μ
(
Mn(x) ≤ g2(n

−1)y
) → e−y−β

as n → ∞. Letting y ↓ 0, it follows that μ(Mn(x) ≤ 0) → 0, and, for y < 0,

μ(Mn(x) ≤ un) = μ
(
Mn(x) ≤ g2(n

−1)y
) ≤ μ(Mn(x) ≤ 0) → 0.

So, we have, in this case, an EVL for Mn of type EV2.

Type g3: For y < 0, we have e−τ3(y) = e−(−y)γ . To conclude that in this case we have the
Weibull evd with parameter γ , we only need to check that for y ≥ 0, μ(Mn(x) ≤ un) = 1.
In fact, for y ≥ 0, since D − g3(n

−1) > 0, we have

μ(Mn(x) ≤ un) = μ
(
Mn(x) ≤ (D − g3(n

−1))y + D
)

≥ μ(Mn(x) ≤ D) = 1.

So we have, in this case, an EVL for Mn of type EV3. �

For the proof of Theorem 2, we will require the following lemma. This is essentially
contained in [22, Theorem 1.6.2]. See also [13, Lemma 2.1] where the lemma was proved
for acips. We provide a proof in the general case for completeness.
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Lemma 7.1 Let (X , B,μ,f ) be a dynamical system, ζ ∈ X and assume that μ is such that
the function � defined on (4.5) is continuous. Furthermore, let ϕ be as in (4.1). Then, for
each y ∈ R, there exist sequences (an)n∈N and (bn)n∈N so that the sequence (un(y))n∈N as
in (2.2) is such that

nμ({x : ϕ(x) > un(y)}) −−−→
n→∞ τ(y) ≥ 0.

Moreover, for every t > 0 there exists y ∈ R such that limit τ(y) = t .

Proof We will prove the lemma in the case when g is of type g2. For the other two types of
g, the argument is the same, but with minor adjustments, see [22, Theorem 1.6.2].

First we show that we can always find a sequence (γn)n∈N such that

nμ(X0 > γn) −−−→
n→∞ 1.

Take γn := inf{y : μ(X0 ≤ y) ≥ 1 − 1/n}, and let us show that it has the desired property.
Note that nμ(X0 > γn) ≤ 1, which means that lim supn→∞ nμ(X0 > γn) ≤ 1. Using (4.7)
and (4.3), for any z < 1, we have

lim inf
n→∞

μ(X0 > γn)

μ(X0 > γnz)
= lim inf

n→∞

μ(B
�(g−1

2 (γn))
(ζ ))

μ(B
�(g−1

2 (zγn))
(ζ ))

= lim inf
n→∞

g−1
2 (γn)

g−1
2 (zγn)

= zβ,

where � is the function defined in (4.6). Since, by definition of γn, for any z < 1, nμ(X0 >

γnz) ≥ 1, letting z → 1, it follows immediately that lim infn→∞ nμ(X0 > γn) ≥ 1.
Now let un(y) = γny, which means that, for all n ∈ N, we are taking an = γ −1

n and bn = 0
in (2.2). Then, using (4.3), it follows that for all y > 0

nμ(X0 > γny) = nμ(B
�(g−1

2 (γny))
(ζ )) = ng−1

2 (γny)

∼ ny−βg−1
2 (γn) = y−βnμ(B

�(g−1
2 (γn))

(ζ )) = y−βnμ(X0 > γn) −−−→
n→∞ y−β.

So taking y = t−1/β > 0 would suit our purposes. �

Proof of Theorem 2 We assume that by hypothesis for every y ∈ R and some sequence
un = un(y) as in (2.2) such that nμ({x : ϕ(x) > un(y)}) −−−→

n→∞ τ(y), we have

lim
n→∞μ({x : Mn(x) ≤ un(y)}) = H̃ (τ (y)) = H(y).

Observe that, by Khintchine’s Theorem (see [22, Theorem 1.2.3]), up to linear scaling the
normalising sequences are unique, which means that we may assume that they are the ones
given by Lemma 7.1. Hence given t > 0, Lemma 7.1 implies that there exists y ∈ R such
that

nμ({x : ϕ(x) > un(y)}) −−−→
n→∞ t.

Given (δn)n∈N ⊂ R
+ with δn −−−→

n→∞ 0, we define

κn := �t/μ(Bδn(ζ ))�.
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We will prove

g−1(uκn) ∼ μ(Bδn(ζ )). (7.7)

If n is sufficiently large, then

{x : ϕ(x) > un} = {x : g(μ(Bdist(x,ζ )(ζ ))) > un} = {x : μ(Bdist(x,ζ )(ζ )) < g−1(un)}.

By (4.7) and the definition of � in (4.6) we obtain

μ({x : ϕ(x) > un}) = μ({x : μ(Bdist(x,ζ )(ζ )) < g−1(un)})
= μ({x : μ(Bdist(x,ζ )(ζ )) < μ(B�(g−1(un))(ζ ))})
= μ({x : dist(x, ζ ) < �(g−1(un))})
= μ(B�(g−1(un))(ζ )).

Hence, by assumption on the sequence un, we have nμ(B�(g−1(un))(ζ )) −−−→
n→∞ τ(y) = t .

As we know that μ(B�(g−1(un))(ζ )) = g−1(un), we have ng−1(un) −−−→
n→∞ t . Thus, we may

write g−1(un) ∼ t
n

and substituting n by κn we immediately obtain (7.7) by definition of κn.
Again, by the definition of � in (4.6) and (4.7) we note that

μ({x : Mκn(x) ≤ uκn}) = μ

(
κn−1⋂

j=0

{x : μ{Bdist(f j (x),ζ )(ζ )} ≥ g−1(uκn)}
)

= μ

(
κn−1⋂

j=0

{x : μ{Bdist(f j (x),ζ )(ζ )} ≥ μ{B�(g−1(uκn ))(ζ )}}
)

= μ

(
κn−1⋂

j=0

{x : dist(f j (x), ζ ) ≥ �(g−1(uκn))}
)

= μ({x : rB
�(g−1(uκn ))

(ζ )(x) ≥ κn}). (7.8)

At this point, we claim that

lim
n→∞μ

({

x : rBδn (ζ )(x) ≥ t

μ(Bδn(ζ ))

})

= lim
n→∞μ({x : Mκn(x) ≤ uκn}). (7.9)

Then, the first part of the theorem follows, since by hypothesis,

μ({x : Mκn(x) ≤ uκn}) −−−→
n→∞ H̃ (τ (y)) = H̃ (t).

For the second part of the theorem, first notice that for the i.i.d setting, i.e. when we
are considering {x : M̂n(x) ≤ un} rather than {x : Mn(x) ≤ un}, (2.4) is equivalent to (2.5).
Therefore, μ({x : M̂n(x) ≤ un}) → e−τ(y) as n → ∞. Hence if the EVL of Mn coincides
with that of M̂n, then we also have H(τ(y)) = e−τ(y).
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It remains to show that (7.9) holds. First, observe that

μ

(

rBδn (ζ ) ≥ t

μ(Bδn(ζ ))

)

= μ(Mκn ≤ uκn) + (μ(rBδn (ζ ) ≥ κn) − μ(Mκn ≤ uκn))

+
(

μ

(

rBδn (ζ ) ≥ t

μ(Bδn(ζ ))

)

− μ(rBδn (ζ ) ≥ κn)

)

.

For the third term on the right, we note, by the definition of κn that we have

∣
∣
∣
∣μ(rBδn (ζ ) ≥ κn) − μ

(

rBδn (ζ ) ≥ t

μ(Bδn(ζ ))

)∣
∣
∣
∣

= |μ(rBδn (ζ ) ≥ κn) − μ(rBδn (ζ ) ≥ (1 + εn)κn)|,

for some sequence (εn)n∈N such that εn → 0, as n → ∞. By (7.6) and stationarity it follows
that

|μ(rBδn (ζ ) ≥ κn) − μ(rBδn (ζ ) ≥ (1 + εn)κn)| ≤ |εn|κnμ(Bδn(ζ )) ∼ |εn|t → 0,

as n → ∞.
For the remaining term, using the definition of κn and (7.8), we have

|μ({rBδn (ζ ) ≥ κn}) − μ({Mκn ≤ uκn})| = |μ({rBδn (ζ ) ≥ κn}) − μ({rB
�(g−1(uκn ))

(ζ ) ≥ κn})|

≤
κn∑

i=1

μ(f −i (Bδn(ζ ) � B�(g−1(uκn ))(ζ )))

= κnμ(Bδn(ζ ) � B�(g−1(uκn ))(ζ ))

∼ t

μ(Bδn(ζ ))
|μ(Bδn(ζ )) − μ(B�(g−1(uκn ))(ζ ))|

= t

∣
∣
∣
∣1 − μ(B�(g−1(uκn ))(ζ ))

μ(Bδn(ζ ))

∣
∣
∣
∣,

which, by (4.7) and (7.7), tends to 0 as n → ∞; this ends the proof of (7.9). �

Proof of Theorem 3 For every n ∈ N, set un = g(μ(Zn−1[ζ ])). Then, by definition of ψ , it
follows immediately that, for large n ∈ N

{X0 > un} = {x : ψ(x) < g−1(un)} = {x : ψ(x) < μ(Zn−1[ζ ])} = Zn[ζ ],

which means that condition (5.5) is verified. Let ωn be defined by (5.6). It is also clear that

{Mωn ≤ un} =
ωn−1⋂

j=0

{x : g(ψ(f j (x))) ≤ g−1(un)} =
ωn−1⋂

j=0

{x : ψ(f j (x)) < g−1(un)}

=
ωn−1⋂

j=0

{x : ψ(f j (x)) ≥ μ(Zn−1[ζ ])} =
ωn−1⋂

j=0

{x : f j (x) /∈ Zn[ζ ]} = {rZn[ζ ] ≥ ωn}.
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Since |ωn − t
μ(Zn[ζ ]) | ≤ 1, recalling (7.6) and using stationarity we have

∣
∣
∣
∣μ(Mωn ≤ un) − μ

(

rZn[ζ ] ≥ t

μ(Zn[ζ ])
)∣

∣
∣
∣ =

∣
∣
∣
∣μ

(

rZn[ζ ] ≥ ωn

)

− μ

(

rZn[ζ ] ≥ t

μ(Zn[ζ ])
)∣

∣
∣
∣

≤ μ(Zn[ζ ]) −−−→
n→∞ 0.

Now, the result follows at once. �

8 Applications

In this section we describe the types of systems that Theorems 1–3 apply to, specifically
when the measures are equilibrium states. Thus the equivalences given in those theorems
yield new EVLs and HTS in those settings.

8.1 Equilibrium States and SRB Measures

For a discrete time dynamical system f : X → X, we let

M = M(f ) := {measures μ : μ ◦ f −1 = μ and μ(X) = 1}.
Given a potential φ : X → [−∞,∞], the pressure of φ with respect to f is defined as

P (φ) = P (f,φ) := sup

{

hμ +
∫

φ dμ : μ ∈ M and −
∫

φ dμ < ∞
}

,

where hμ denotes the measure theoretic entropy of f with respect to μ. A measure μ ∈ M
which ‘achieves the pressure’, i.e. with hμ + ∫

φ dμ = P (φ), is called an equilibrium state.
For example, if we set φ to be a constant, then the relevant equilibrium state is the measure
of maximal entropy.

If P1 is a partition of X and we refine the partition to obtain Pn = ∨n−1
i=0 f −i P1 as above.

Let Snφ(x) := ∑n−1
k=0 φ ◦ f k(x) be the n-th ergodic sum along the orbit of x. We say that μ

satisfies the Gibbs property if for μ-a.e. x ∈ X there are K,P ∈ R such that

1

K
≤ μ(Zn[x])

eSnφ(x)−nP
≤ K. (8.1)

Remark 8.1 Notice that (8.1) implies that the μ-measure of n-cylinders around a μ-typical
point x fluctuates as much as Snφ(x) fluctuates. In general for non-constant potentials, the
Law of the Iterated Logarithm (see [9]) implies that Snφ(x)

n
has liminf and limsup equal to

0 and ∞ respectively. Observe that the potential φ for the full tent map in Section 5 is the
constant log 2.

Sinai-Ruelle-Bowen measures (SRB measures) are often used to analyse dissipative chaotic
systems. Assume that f : X → X is a C2 diffeomorphism of a finite dimensional manifold
X with a volume form defined on the Borel sets of X that we call Lebesgue measure. We
have in mind dissipative systems that present chaotic strange attractors such as the families
of Lozi maps [23] or Hénon maps [17]. The fact that these systems contract volume rules
out the possibility of invariant measures equivalent to Lebesgue. SRB measures are like the
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next best thing when no invariant measure equivalent to volume exists. Their relation with
volume is that conditional to unstable manifolds they are absolutely continuous with respect
to the conditional Lebesgue measure on those leaves. We do not give a formal definition of
these measures: instead we refer the reader to [28] which contains a very complete descrip-
tion. However, we would like to emphasise that these measures, at least in the examples we
mention here, are not absolutely continuous with respect to Lebesgue measure, do not have
atoms and can even be realised as equilibrium states for a certain potentials. Therefore the
current paper provides tools to understand HTS and EVLs for these measures.

8.2 Particular Systems to Which Theorems 1–3 Apply

Exponential HTS to cylinders have been shown for many hyperbolic systems. This was first
shown for Axiom A maps f : X → X with equilibrium state μφ with respect to a Hölder
potential φ : X → R in [18] (see also [24] for the Markov chain setting). In this case the
equilibrium state μφ is a Gibbs state which satisfies a mixing condition called ‘α-mixing’,
for details see [19] and [1]. A theory for HTS to cylinders for various dynamical systems
with Gibbs states with various mixing conditions, such as α-mixing, can be found in for
example [1, 2, 19]. One of the issues of interest in these cases is the rate of convergence to
the exponential law.

So in all of the above cases we can apply Theorem 3 to get EVLs for cylinders. For a
study of HTS to cylinders with a particular focus on non-uniformly hyperbolic systems in
higher dimensions see [26].

The problem of proving HTS to balls in dimension higher than one is often complicated
by the fact that the measure of small balls can behave badly as the size of the ball shrinks.
Mainly because of this, much more is known for HTS to balls in one dimension. For ex-
ample if f : I → I is a multimodal map of the unit interval I and φ = −t log |Df | is a
potential with an equilibrium state μt (see [21] for the most general result in on existence of
such equilibrium states), it was proved in [4] that the system has exponential HTS to balls.
A similar result was proved for Hölder potentials φ : I → R with φ < P(φ). These results
also hold for Manneville-Pomeau maps, see for example [3]. Then Theorem 1 applies to all
these cases to obtain EVLs.

In [14] the authors considered among other systems the family of Lozi maps, which have
SRB measures μ that are not absolutely continuous with respect to Lebesgue, and prove the
existence of EVLs of the classical type for μ-a.e. point in the support of μ. In this setting,
we can apply Theorem 2 to obtain HTS for Lozi maps.

8.3 Non Exponential Laws

In [7] it is shown that for an irrational circle rotation (S1, f ) with Lebesgue measure there
are subsequences (ni)i∈N and (kj )j∈N such that the HTS to nested cylinders along these
subsequences are G1 and G2 respectively. Here G1 comes from the uniform distribution and
G2 is a particular piecewise linear function, so neither of the distributions are exponential.
Note that (S1, f ) has zero topological entropy. So in this case we can apply a modified
version of Theorem 3, replacing the sequence (un)n∈N in (5.5) with (uni

)i∈N or (ukj
)j∈N

and making the corresponding changes to (ωn)n∈N in (5.6). This yields EVLs other than
types 1–3.
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